References
[1] S. Fukuda et al., “Bifidobacteria can protect from enteropathogenic infection through production of acetate,” Nature, vol. 469, no. 7331, pp. 543–547, 2011, doi: 10.1038/nature09646.
[2] I. O’Neill, Z. Schofield, and L. J. Hall, “Exploring the role of the microbiota member Bifidobacterium in modulating immune-linked diseases,” Emerg Top Life Sci, vol. 1, no. 4, pp. 333–349, 2017, doi: 10.1042/etls20170058.
[3] B. M. Henrick et al., “Bifidobacteria-mediated immune system imprinting early in life,” Cell, 2021, doi: 10.1016/j.cell.2021.05.030.
[4] B. M. Henrick et al., “Colonization by B. infantis EVC001 modulates enteric inflammation in exclusively breastfed infants,” Pediatr Res, vol. 86, no. 6, pp. 749–757, 2019, doi: 10.1038/s41390-019-0533-2.
[5] J. E. Spreckels and A. Zhernakova, “Milk and bugs educate infant immune systems,” Immunity, vol. 54, no. 8, pp. 1633–1635, 2021, doi: 10.1016/j.immuni.2021.07.013.
[6] S. A. Frese et al., “Persistence of Supplemented Bifidobacterium longum subsp. infantis EVC001 in Breastfed Infants,” Msphere, vol. 2, no. 6, pp. e00501-17, 2017, doi: 10.1128/msphere.00501-17.
[7] C. M. Dieterich, J. P. Felice, E. O’Sullivan, and K. M. Rasmussen, “Breastfeeding and Health Outcomes for the Mother-Infant Dyad,” Pediatr Clin N Am, vol. 60, no. 1, pp. 31–48, 2013, doi: 10.1016/j.pcl.2012.09.010.
[8] M. O. Coker et al., “Infant Feeding Alters the Longitudinal Impact of Birth Mode on the Development of the Gut Microbiota in the First Year of Life,” Front Microbiol, vol. 12, p. 642197, 2021, doi: 10.3389/fmicb.2021.642197.
[9] C. J. Stewart et al., “Temporal development of the gut microbiome in early childhood from the TEDDY study,” Nature, vol. 562, no. 7728, pp. 583–588, 2018, doi: 10.1038/s41586-018-0617-x.
[10] K. E. Fujimura et al., “Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation,” Nat Med, vol. 22, no. 10, pp. 1187–1191, 2016, doi: 10.1038/nm.4176.
[11] J. Stokholm et al., “Maturation of the gut microbiome and risk of asthma in childhood,” Nat Commun, vol. 9, no. 1, p. 141, 2018, doi: 10.1038/s41467-017-02573-2.
[12] T. Vatanen et al., “Variation in Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans,” Cell, vol. 165, no. 4, pp. 842–853, 2016, doi: 10.1016/j.cell.2016.04.007.
[13] A. Marcobal et al., “Bacteroides in the Infant Gut Consume Milk Oligosaccharides via Mucus-Utilization Pathways,” Cell Host Microbe, vol. 10, no. 5, pp. 507–514, 2011, doi: 10.1016/j.chom.2011.10.007.
[14] J. L. Combellick et al., “Differences in the fecal microbiota of neonates born at home or in the hospital,” Sci Rep-uk, vol. 8, no. 1, p. 15660, 2018, doi: 10.1038/s41598-018-33995-7.
[15] J. E. Koenig et al., “Succession of microbial consortia in the developing infant gut microbiome,” Proc National Acad Sci, vol. 108, no. Supplement 1, pp. 4578–4585, 2011, doi: 10.1073/pnas.1000081107.
[16] A. Marcobal and J. L. Sonnenburg, “Human milk oligosaccharide consumption by intestinal microbiota,” Clin Microbiol Infec, vol. 18, no. s4, pp. 12–15, 2012, doi: 10.1111/j.1469-0691.2012.03863.x.
[17] C. M. Mitchell et al., “Delivery Mode Affects Stability of Early Infant Gut Microbiota,” Cell Reports Medicine, vol. 1, no. 9, p. 100156, 2020, doi: 10.1016/j.xcrm.2020.100156.
[18] M. B. Azad et al., “Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study,” Bjog Int J Obstetrics Gynaecol, vol. 123, no. 6, pp. 983–993, 2016, doi: 10.1111/1471-0528.13601.
[19] Y. Shao et al., “Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth,” Nature, vol. 574, no. 7776, pp. 117–121, 2019, doi: 10.1038/s41586-019-1560-1.
[20] M. Y. Zeng, N. Inohara, and G. Nuñez, “Mechanisms of inflammation-driven bacterial dysbiosis in the gut,” Mucosal Immunol, vol. 10, no. 1, pp. 18–26, 2017, doi: 10.1038/mi.2016.75.
[21] M. Reyman et al., “Impact of delivery mode-associated gut microbiota dynamics on health in the first year of life,” Nat Commun, vol. 10, no. 1, p. 4997, 2019, doi: 10.1038/s41467-019-13014-7.
[22] R. M. Lebeaux et al., “The infant gut resistome is associated with E. coli and early-life exposures,” Bmc Microbiol, vol. 21, no. 1, p. 201, 2021, doi: 10.1186/s12866-021-02129-x.
[23] A. J. Gasparrini et al., “Persistent metagenomic signatures of early-life hospitalization and antibiotic treatment in the infant gut microbiota and resistome,” Nat Microbiol, vol. 4, no. 12, pp. 2285–2297, 2019, doi: 10.1038/s41564-019-0550-2.
[24] C. J. Hill et al., “Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort,” Microbiome, vol. 5, no. 1, p. 4, 2017, doi: 10.1186/s40168-016-0213-y.
[25] B. Krawczyk, P. Wityk, M. Gałęcka, and M. Michalik, “The Many Faces of Enterococcus spp.—Commensal, Probiotic and Opportunistic Pathogen,” Microorg, vol. 9, no. 9, p. 1900, 2021, doi: 10.3390/microorganisms9091900.
[26] W. R. Miller, J. M. Munita, and C. A. Arias, “Mechanisms of antibiotic resistance in enterococci,” Expert Rev Anti-infe, vol. 12, no. 10, pp. 1221–1236, 2014, doi: 10.1586/14787210.2014.956092.
[27] Y. M. Park et al., “Imbalance of Gut Streptococcus, Clostridium, and Akkermansia Determines the Natural Course of Atopic Dermatitis in Infant,” Allergy Asthma Immunol Res, vol. 12, no. 2, pp. 322–337, 2019, doi: 10.4168/aair.2020.12.2.322.
[28] A. D. Kostic et al., “The Dynamics of the Human Infant Gut Microbiome in Development and in Progression toward Type 1 Diabetes,” Cell Host Microbe, vol. 17, no. 2, pp. 260–273, 2015, doi: 10.1016/j.chom.2015.01.001.
[29] J. Stokholm et al., “Cesarean section changes neonatal gut colonization,” J Allergy Clin Immun, vol. 138, no. 3, pp. 881-889.e2, 2016, doi: 10.1016/j.jaci.2016.01.028.
[30] S. Subramanian et al., “Persistent gut microbiota immaturity in malnourished Bangladeshi children,” Nature, vol. 510, no. 7505, pp. 417–421, 2014, doi: 10.1038/nature13421.
[31] A. van Belkum et al., “Co-evolutionary aspects of human colonisation and infection by Staphylococcus aureus,” Infect Genetics Evol, vol. 9, no. 1, pp. 32–47, 2009, doi: 10.1016/j.meegid.2008.09.012.
[32] M. F. Davis, R. D. Peng, M. C. McCormack, and E. C. Matsui, “Staphylococcus aureus colonization is associated with wheeze and asthma among US children and young adults,” J Allergy Clin Immun, vol. 135, no. 3, pp. 811-813.e5, 2015, doi: 10.1016/j.jaci.2014.10.052.
[33] C. Bachert et al., “Staphylococcus aureus and its IgE-inducing enterotoxins in asthma: current knowledge,” Eur Respir J, vol. 55, no. 4, p. 1901592, 2020, doi: 10.1183/13993003.01592-2019.
[34] Y.-C. Kim et al., “Staphylococcus aureus Nasal Colonization and Asthma in Adults: Systematic Review and Meta-Analysis,” J Allergy Clin Immunol Pract, vol. 7, no. 2, pp. 606-615.e9, 2019, doi: 10.1016/j.jaip.2018.08.020.
[35] H. M. Hesla et al., “Impact of lifestyle on the gut microbiota of healthy infants and their mothers – the ALADDIN birth cohort,” Fems Microbiol Ecol, vol. 90, no. 3, pp. 791–801, 2014, doi: 10.1111/1574-6941.12434.
[36] J. Ma et al., “Comparison of gut microbiota in exclusively breast-fed and formula-fed babies: a study of 91 term infants,” Sci Rep-uk, vol. 10, no. 1, p. 15792, 2020, doi: 10.1038/s41598-020-72635-x.
[37] M. G. Dominguez-Bello et al., “Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns,” Proc National Acad Sci, vol. 107, no. 26, pp. 11971–11975, 2010, doi: 10.1073/pnas.1002601107.
[38] F. Bäckhed et al., “Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life,” Cell Host Microbe, vol. 17, no. 5, pp. 690–703, 2015, doi: 10.1016/j.chom.2015.04.004.
[39] P. S. Pannaraj et al., “Association Between Breast Milk Bacterial Communities and Establishment and Development of the Infant Gut Microbiome,” Jama Pediatr, vol. 171, no. 7, p. 647, 2017, doi: 10.1001/jamapediatrics.2017.0378.
[40] T. Ding and P. D. Schloss, “Dynamics and associations of microbial community types across the human body,” Nature, vol. 509, no. 7500, pp. 357–360, 2014, doi: 10.1038/nature13178.