References
[1] N. González et al., “Dietary exposure to total and inorganic arsenic via rice and rice-based products consumption,” Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc., vol. 141, p. 111420, Jul. 2020, doi: 10.1016/j.fct.2020.111420.
[2] G. Du Toit et al., “Randomized Trial of Peanut Consumption in Infants at Risk for Peanut Allergy,” N. Engl. J. Med., vol. 372, no. 9, pp. 803–813, Feb. 2015, doi: 10.1056/NEJMoa1414850.
[3] B. I. Nwaru et al., “Timing of infant feeding in relation to childhood asthma and allergic diseases,” J. Allergy Clin. Immunol., vol. 131, no. 1, Art. no. 1, Jan. 2013, doi: 10.1016/j.jaci.2012.10.028.
[4] Z. Huang, Y. Liu, G. Qi, D. Brand, and S. G. Zheng, “Role of Vitamin A in the Immune System,” J. Clin. Med., vol. 7, no. 9, Art. no. 9, Sep. 2018, doi: 10.3390/jcm7090258.
[5] M. Eggersdorfer and A. Wyss, “Carotenoids in human nutrition and health,” Arch. Biochem. Biophys., vol. 652, pp. 18–26, Aug. 2018, doi: 10.1016/j.abb.2018.06.001.
[6] “FoodData Central - Butternut squash,” Feb. 05, 2022. https://fdc.nal.usda.gov/fdc-app.html#/food-details/169295/nutrients (accessed Feb. 05, 2022).
[7] C. F. Ruggiero, E. E. Hohman, L. L. Birch, I. M. Paul, and J. S. Savage, “INSIGHT responsive parenting intervention effects on child appetite and maternal feeding practices through age 3 years,” Appetite, vol. 159, p. 105060, Apr. 2021, doi: 10.1016/j.appet.2020.105060.
[8] “FoodData Central - Green Pea,” Feb. 05, 2022. https://fdc.nal.usda.gov/fdc-app.html#/food-details/170017/nutrients (accessed Feb. 05, 2022).
[9] W. J. Dahl, L. M. Foster, and R. T. Tyler, “Review of the health benefits of peas (Pisum sativum L.),” Br. J. Nutr., vol. 108 Suppl 1, pp. S3-10, Aug. 2012, doi: 10.1017/S0007114512000852.
[10] C. J. Rutzke et al., “Bioavailability of iron from spinach using an in vitro/human Caco-2 cell bioassay model,” Habitat. Elmsford N, vol. 10, no. 1, Art. no. 1, 2004, doi: 10.3727/154296604774808900.
[11] S. Iwinski et al., “Child attachment behavior as a moderator of the relation between feeding responsiveness and picky eating behavior,” Eat. Behav., vol. 40, p. 101465, Jan. 2021, doi: 10.1016/j.eatbeh.2020.101465.
[12] N. Shloim, I. Shafiq, P. Blundell-Birtill, and M. M. Hetherington, “Infant hunger and satiety cues during the first two years of life: Developmental changes of within meal signalling,” Appetite, vol. 128, pp. 303–310, Sep. 2018, doi: 10.1016/j.appet.2018.05.144.
[13] C. J. Stewart et al., “Temporal development of the gut microbiome in early childhood from the TEDDY study,” Nature, vol. 562, no. 7728, Art. no. 7728, Oct. 2018, doi: 10.1038/s41586-018-0617-x.
[14] P. S. Pannaraj et al., “Association Between Breast Milk Bacterial Communities and Establishment and Development of the Infant Gut Microbiome,” JAMA Pediatr., vol. 171, no. 7, Art. no. 7, Jul. 2017, doi: 10.1001/jamapediatrics.2017.0378.
[15] G. R. Gibson and M. B. Roberfroid, “Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics,” J. Nutr., vol. 125, no. 6, Art. no. 6, Jun. 1995, doi: 10.1093/jn/125.6.1401.
[16] S. G. Parkar et al., “The sugar composition of the fibre in selected plant foods modulates weaning infants’ gut microbiome composition and fermentation metabolites in vitro,” Sci. Rep., vol. 11, no. 1, Art. no. 1, Apr. 2021, doi: 10.1038/s41598-021-88445-8.
[17] S. K. Tamana et al., “Bacteroides-dominant gut microbiome of late infancy is associated with enhanced neurodevelopment,” Gut Microbes, vol. 13, no. 1, Art. no. 1, Jan. 2021, doi: 10.1080/19490976.2021.1930875.
[18] M. F. Laursen, “Gut Microbiota Development: Influence of Diet from Infancy to Toddlerhood,” Ann. Nutr. Metab., vol. 77, no. 3, Art. no. 3, 2021, doi: 10.1159/000517912.
[19] L. E. Zambrana et al., “Rice bran supplementation modulates growth, microbiota and metabolome in weaning infants: a clinical trial in Nicaragua and Mali,” Sci. Rep., vol. 9, no. 1, Art. no. 1, Sep. 2019, doi: 10.1038/s41598-019-50344-4.
[20] P. S. Salvi and R. A. Cowles, “Butyrate and the Intestinal Epithelium: Modulation of Proliferation and Inflammation in Homeostasis and Disease,” Cells, vol. 10, no. 7, p. 1775, Jul. 2021, doi: 10.3390/cells10071775.
[21] I. Rowland et al., “Gut microbiota functions: metabolism of nutrients and other food components,” Eur. J. Nutr., vol. 57, no. 1, Art. no. 1, Feb. 2018, doi: 10.1007/s00394-017-1445-8.
[22] S. Mehta, S. L. Huey, D. McDonald, R. Knight, and J. L. Finkelstein, “Nutritional Interventions and the Gut Microbiome in Children,” Annu. Rev. Nutr., Jul. 2021, doi: 10.1146/annurev-nutr-021020-025755.
[23] N. Younge, Q. Yang, and P. C. Seed, “Enteral High Fat-Polyunsaturated Fatty Acid Blend Alters the Pathogen Composition of the Intestinal Microbiome in Premature Infants with an Enterostomy,” J. Pediatr., vol. 181, pp. 93-101.e6, Feb. 2017, doi: 10.1016/j.jpeds.2016.10.053.
[24] K. G. Dewey, “The challenge of meeting nutrient needs of infants and young children during the period of complementary feeding: an evolutionary perspective,” J. Nutr., vol. 143, no. 12, Art. no. 12, Dec. 2013, doi: 10.3945/jn.113.182527.
[25] G. A. M. Kortman, M. Raffatellu, D. W. Swinkels, and H. Tjalsma, “Nutritional iron turned inside out: intestinal stress from a gut microbial perspective,” FEMS Microbiol. Rev., vol. 38, no. 6, Art. no. 6, Nov. 2014, doi: 10.1111/1574-6976.12086.
[26] M. B. Zimmermann, “Global look at nutritional and functional iron deficiency in infancy,” Hematol. Am. Soc. Hematol. Educ. Program, vol. 2020, no. 1, Art. no. 1, Dec. 2020, doi: 10.1182/hematology.2020000131.
[27] W. Qasem et al., “Assessment of complementary feeding of Canadian infants: effects on microbiome & oxidative stress, a randomized controlled trial,” BMC Pediatr., vol. 17, no. 1, p. 54, Feb. 2017, doi: 10.1186/s12887-017-0805-0.
[28] N. F. Krebs et al., “Effects of Different Complementary Feeding Regimens on Iron Status and Enteric Microbiota in Breastfed Infants,” J. Pediatr., vol. 163, no. 2, Art. no. 2, Aug. 2013, doi: 10.1016/j.jpeds.2013.01.024.
[29] W. Petroski and D. M. Minich, “Is There Such a Thing as ‘Anti-Nutrients’? A Narrative Review of Perceived Problematic Plant Compounds,” Nutrients, vol. 12, no. 10, Art. no. 10, Oct. 2020, doi: 10.3390/nu12102929.
[30] R. Xiang et al., “Effects of Zinc Combined with Probiotics on Antibiotic-associated Diarrhea Secondary to Childhood Pneumonia,” J. Trop. Pediatr., vol. 65, no. 5, Art. no. 5, Oct. 2019, doi: 10.1093/tropej/fmy069.